Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 18(18): 2838-2848, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30083680

RESUMO

High-content real-time imaging of hormone secretion in tissues or cell populations is a challenging task, which is unlikely to be resolved directly, despite immense translational value. We approach this problem indirectly, using compensatory endocytosis, a process that closely follows exocytosis in the cell, as a surrogate read-out for secretion. The tissue is immobilized in an open-air perifusion chamber and imaged using a two-photon microscope. A fluorescent polar tracer, perifused through the experimental circuit, gets trapped into the cells via endocytosis, and is quantified using a feature-detection algorithm. The signal of the tracer that accumulates into the endocytotic system reliably reflects stimulated exocytosis, which is demonstrated via co-imaging of the latter using existing reporters. A high signal-to-noise ratio and compatibility with multisensor imaging affords the real-time quantification of the secretion at the tissue/population level, whereas the cumulative nature of the signal allows imprinting of the "secretory history" within each cell. The technology works for several cell types, reflects disease progression and can be used for human tissue.


Assuntos
Endocitose , Hormônios/metabolismo , Imageamento Tridimensional , Animais , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Cinética , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Perfusão
2.
Diabetes ; 65(7): 1952-61, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26993066

RESUMO

The transcription factor Sox4 has been proposed to underlie the increased type 2 diabetes risk linked to an intronic single nucleotide polymorphism in CDKAL1 In a mouse model expressing a mutant form of Sox4, glucose-induced insulin secretion is reduced by 40% despite normal intracellular Ca(2+) signaling and depolarization-evoked exocytosis. This paradox is explained by a fourfold increase in kiss-and-run exocytosis (as determined by single-granule exocytosis measurements) in which the fusion pore connecting the granule lumen to the exterior expands to a diameter of only 2 nm, which does not allow the exit of insulin. Microarray analysis indicated that this correlated with an increased expression of the exocytosis-regulating protein Stxbp6. In a large collection of human islet preparations (n = 63), STXBP6 expression and glucose-induced insulin secretion correlated positively and negatively with SOX4 expression, respectively. Overexpression of SOX4 in the human insulin-secreting cell EndoC-ßH2 interfered with granule emptying and inhibited hormone release, the latter effect reversed by silencing STXBP6 These data suggest that increased SOX4 expression inhibits insulin secretion and increased diabetes risk by the upregulation of STXBP6 and an increase in kiss-and-run exocytosis at the expense of full fusion. We propose that pharmacological interventions promoting fusion pore expansion may be effective in diabetes therapy.


Assuntos
Exocitose/fisiologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição SOXC/genética , Animais , Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Inativação Gênica , Humanos , Secreção de Insulina , Masculino , Camundongos , Fatores de Transcrição SOXC/metabolismo , Regulação para Cima
3.
Endocr J ; 62(4): 387-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25739471

RESUMO

In this study, we present a case of developmental delay, epilepsy and neonatal diabetes (DEND) syndrome in a young male patient with the R50P mutation located in the Kir6.2 subunit of the ATP-sensitive K(+) (KATP) channel. Whereas most patients with DEND syndrome are resistant to sulfonylurea therapy, our patient was responsive to sulfonylurea, lacked the most common neurological symptoms, such as epilepsy, but refused to drink water. His serum electrolytes and plasma osmolarity were normal but the serum vasopressin level was increased. To investigate the underlying mechanism of his water intake disorder, a 5 µL aliquot of 340 µM KATP channel opener diazoxide or 100 µM KATP channel inhibitor glibenclamide was injected into the third ventricle of the rat brain, and water intake was monitored. Although the injection of glibenclamide had no effect, injection of diazoxide significantly increased water intake by about 1.5 fold without affecting food intake. This result indicates that the KATP channel activity in the brain may have an influence on water intake. Here, we present the first case of a DEND syndrome-afflicted patient with water intake disorder and increased serum vasopressin level, possibly related to altered KATP channel activity.


Assuntos
Deficiências do Desenvolvimento/genética , Ingestão de Líquidos/genética , Epilepsia/genética , Hiperglicemia/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Substituição de Aminoácidos , Animais , Arginina/genética , Criança , Epilepsia/complicações , Humanos , Hiperglicemia/complicações , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto , Canais de Potássio Corretores do Fluxo de Internalização/química , Prolina/genética , Ratos , Ratos Wistar , Síndrome
4.
Cell Metab ; 18(6): 871-82, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24315372

RESUMO

Glucagon, secreted by pancreatic islet α cells, is the principal hyperglycemic hormone. In diabetes, glucagon secretion is not suppressed at high glucose, exacerbating the consequences of insufficient insulin secretion, and is inadequate at low glucose, potentially leading to fatal hypoglycemia. The causal mechanisms remain unknown. Here we show that α cell KATP-channel activity is very low under hypoglycemic conditions and that hyperglycemia, via elevated intracellular ATP/ADP, leads to complete inhibition. This produces membrane depolarization and voltage-dependent inactivation of the Na(+) channels involved in action potential firing that, via reduced action potential height and Ca(2+) entry, suppresses glucagon secretion. Maneuvers that increase KATP channel activity, such as metabolic inhibition, mimic the glucagon secretory defects associated with diabetes. Low concentrations of the KATP channel blocker tolbutamide partially restore glucose-regulated glucagon secretion in islets from type 2 diabetic organ donors. These data suggest that impaired metabolic control of the KATP channels underlies the defective glucose regulation of glucagon secretion in type 2 diabetes.


Assuntos
Glucagon/metabolismo , Glucose/metabolismo , Canais KATP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Exocitose , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/fisiologia , Glucose/farmacologia , Humanos , Técnicas In Vitro , Canais KATP/antagonistas & inibidores , Potenciais da Membrana/fisiologia , Camundongos , Mutação , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Doadores de Tecidos , Tolbutamida/farmacologia
5.
J Pediatr Endocrinol Metab ; 26(3-4): 343-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23348218

RESUMO

Recently, a case of newborn infant with transient hyperinsulinism has been reported. This infant was reported to be free from typical perinatal risk factors of hyperinsulinism except for the fact that the mother of the baby was receiving the antidepressant bupropion during her pregnancy. However, the mother did not experience hyperinsulinism and, so far, there are no reports about the pharmacological mechanism of bupropion causing hyperinsulinemia. In this study, bupropion was shown to inhibit KATP channel activity in pancreatic ß-cell membranes and induce insulin secretion in relatively high concentration. This study shows, for the first time, that bupropion has a direct electrophysiological action on pancreatic ß-cells and can cause insulin secretion and also highlights the risk of using bupropion during pregnancy.


Assuntos
Bupropiona/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Animais , Antidepressivos de Segunda Geração/efeitos adversos , Antidepressivos de Segunda Geração/farmacologia , Bupropiona/efeitos adversos , Feminino , Humanos , Hiperinsulinismo/induzido quimicamente , Hiperinsulinismo/metabolismo , Recém-Nascido , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Bloqueadores dos Canais de Potássio/efeitos adversos , Gravidez
6.
Interface Focus ; 1(1): 143-52, 2011 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-22419980

RESUMO

Pancreatic ß-cells use Ca(2+)-dependent exocytosis of large dense core vesicles to release insulin. Exocytosis in ß-cells has been studied biochemically, biophysically and optically. We have previously developed a biophysical method to monitor release of endogenous intragranular constituents that are co-released with insulin. This technique involves the expression of ionotropic membrane receptors in the ß-cell plasma membrane and enables measurements of exocytosis of individual vesicles with sub-millisecond resolution. Like carbon fibre amperometry, this method allows fine details of the release process, like the expansion of the fusion pore (the narrow connection between the granule lumen and the extracellular space), to be monitored. Here, we discuss experimental data obtained with this method within the framework of a simple mathematical model that describes the release of low-molecular constituents during exocytosis of the insulin granules. Our findings suggest that the fusion pore functions as a molecular sieve, allowing differential release of low- and high-molecular-weight granule constituents.

7.
PLoS One ; 5(5): e10646, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20498720

RESUMO

BACKGROUND: SEDLIN, a 140 amino acid subunit of the Transport Protein Particle (TRAPP) complex, is ubiquitously expressed and interacts with the transcription factors c-myc promoter-binding protein 1 (MBP1), pituitary homeobox 1 (PITX1) and steroidogenic factor 1 (SF1). SEDLIN mutations cause X-linked spondyloepiphyseal dysplasia tarda (SEDT). METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effects of 4 missense (Asp47Tyr, Ser73Leu, Phe83Ser and Val130Asp) and the most C-terminal nonsense (Gln131Stop) SEDT-associated mutations on interactions with MBP1, PITX1 and SF1 by expression in COS7 cells. Wild-type SEDLIN was present in the cytoplasm and nucleus and interacted with MBP1, PITX1 and SF1; the SEDLIN mutations did not alter these subcellular localizations or the interactions. However, SEDLIN was found to homodimerize, and the formation of dimers between wild-type and mutant SEDLIN would mask a loss in these interactions. A mammalian SEDLIN null cell-line is not available, and the interactions between SEDLIN and the transcription factors were therefore investigated in yeast, which does not endogenously express SEDLIN. This revealed that all the SEDT mutations, except Asp47Tyr, lead to a loss of interaction with MBP1, PITX1 and SF1. Three-dimensional modelling studies of SEDLIN revealed that Asp47 resides on the surface whereas all the other mutant residues lie within the hydrophobic core of the protein, and hence are likely to affect the correct folding of SEDLIN and thereby disrupt protein-protein interactions. CONCLUSIONS/SIGNIFICANCE: Our studies demonstrate that SEDLIN is present in the nucleus, forms homodimers and that SEDT-associated mutations cause a loss of interaction with the transcription factors MBP1, PITX1 and SF1.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação/genética , Fatores de Transcrição Box Pareados/metabolismo , Fosfopiruvato Hidratase/metabolismo , Multimerização Proteica , Fator Esteroidogênico 1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular , Humanos , Proteínas de Membrana Transportadoras/química , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo , Fatores de Transcrição/química , Técnicas do Sistema de Duplo-Híbrido
8.
Am J Physiol Renal Physiol ; 298(2): F365-80, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19940036

RESUMO

Renal tubular reabsorption is important for extracellular fluid homeostasis and much of this occurs via the receptor-mediated endocytic pathway. This pathway is disrupted in Dent's disease, an X-linked renal tubular disorder that is characterized by low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, and renal failure. Dent's disease is due to mutations of CLC-5, a chloride/proton antiporter, expressed in endosomes and apical membranes of renal tubules. Loss of CLC-5 function alters receptor-mediated endocytosis and trafficking of megalin and cubilin, although the underlying mechanisms remain to be elucidated. Here, we report that CLC-5 interacts with kinesin family member 3B (KIF3B), a heterotrimeric motor protein that facilitates fast anterograde translocation of membranous organelles. Using yeast two-hybrid, glutathione-S-transferase pull-down and coimmunoprecipitation assays, the COOH terminus of CLC-5 and the coiled-coil and globular domains of KIF3B were shown to interact. This was confirmed in vivo by endogenous coimmunoprecipitation of CLC-5 and KIF3B and codistribution with endosomal markers in mouse kidney fractions. Confocal live cell imaging in kidney cells further demonstrated association of CLC-5 and KIF3B, and transport of CLC-5-containing vesicles along KIF3B microtubules. KIF3B overexpression and underexpression, using siRNA, had reciprocal effects on whole cell chloride current amplitudes, CLC-5 cell surface expression, and endocytosis of albumin and transferrin. Clcn5(Y/-) mouse kidneys and isolated proximal tubular polarized cells showed increased KIF3B expression, whose effects on albumin endocytosis were dependent on CLC-5 expression. Thus, the CLC-5 and KIF3B interaction is important for CLC-5 plasma membrane expression and for facilitating endocytosis and microtubular transport in the kidney.


Assuntos
Canais de Cloreto/metabolismo , Endocitose/fisiologia , Rim/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Adulto , Albuminas/metabolismo , Animais , Células COS , Linhagem Celular , Canais de Cloreto/fisiologia , Chlorocebus aethiops , DNA Complementar , Regulação para Baixo , Interações Medicamentosas , Condutividade Elétrica , Biblioteca Gênica , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Humanos , Rim/citologia , Nefropatias/fisiopatologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Camundongos , Camundongos Knockout , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Técnicas do Sistema de Duplo-Híbrido , Regulação para Cima
9.
Methods Enzymol ; 457: 451-80, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19426883

RESUMO

Nicotinamide nucleotide transhydrogenase (NNT) is an inner mitochondrial membrane transmembrane protein involved in regenerating NADPH, coupled with proton translocation across the inner membrane. We have shown that a defect in Nnt function in the mouse, and specifically within the beta-cell, leads to a reduction in insulin secretion. This chapter describes methods for examining Nnt function in the mouse. This includes generating in vivo models with point mutations and expression of Nnt by transgenesis, and making in vitro models, by silencing of gene expression. In addition, techniques are described to measure insulin secretion, calcium and hydrogen peroxide concentrations, membrane potential, and NNT activity. These approaches and techniques can also be applied to other genes of interest.


Assuntos
Insulina/metabolismo , Mitocôndrias/enzimologia , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo , Animais , Cálcio/análise , Linhagem Celular , Inativação Gênica , Peróxido de Hidrogênio/análise , Secreção de Insulina , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Mitocôndrias/genética , Mutação Puntual
10.
Hum Mol Genet ; 18(16): 2963-74, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19465746

RESUMO

Familial juvenile hyperuricaemic nephropathy (FJHN), an autosomal dominant disorder, is caused by mutations in the UMOD gene, which encodes Uromodulin, a glycosylphosphatidylinositol-anchored protein that is expressed in the thick ascending limb of the loop of Henle and excreted in the urine. Uromodulin contains three epidermal growth factor (EGF)-like domains, a cysteine-rich region which includes a domain of eight cysteines and a zona pellucida (ZP) domain. Over 90% of UMOD mutations are missense, and 62% alter a cysteine residue, implicating a role for protein misfolding in the disease. We investigated 20 northern European FJHN probands for UMOD mutations. Wild-type and mutant Uromodulins were functionally studied by expression in HeLa cells and by the use of western blot analysis and confocal microscopy. Six different UMOD missense mutations (Cys32Trp, Arg185Gly, Asp196Asn, Cys217Trp, Cys223Arg and Gly488Arg) were identified. Patients with UMOD mutations were phenotypically similar to those without UMOD mutations. The mutant Uromodulins had significantly delayed maturation, retention in the endoplasmic reticulum (ER) and reduced expression at the plasma membrane. However, Gly488Arg, which is the only mutation we identified in the ZP domain, was found to be associated with milder in vitro abnormalities and to be the only mutant Uromodulin detected in conditioned medium from transfected cells, indicating that the severity of the mutant phenotypes may depend on their location within the protein. Thus, FJHN-causing Uromodulin mutants are retained in the ER, with impaired intracellular maturation and trafficking, thereby indicating mechanisms whereby Uromodulin mutants may cause the phenotype of FJHN.


Assuntos
Retículo Endoplasmático/metabolismo , Hiperuricemia/genética , Mucoproteínas/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Idoso , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Feminino , Células HeLa , Humanos , Hiperuricemia/metabolismo , Masculino , Pessoa de Meia-Idade , Mucoproteínas/química , Mucoproteínas/metabolismo , Linhagem , Dobramento de Proteína , Transporte Proteico , Uromodulina , População Branca/genética , Adulto Jovem
11.
Endocrinology ; 150(7): 3067-75, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19213846

RESUMO

The neural cell adhesion molecule (NCAM) is required for cell type segregation during pancreatic islet organogenesis. We have investigated the functional consequences of ablating NCAM on pancreatic beta-cell function. In vivo, NCAM(-/-) mice exhibit impaired glucose tolerance and basal hyperinsulinemia. Insulin secretion from isolated NCAM(-/-) islets is enhanced at glucose concentrations below 15 mM but inhibited at higher concentrations. Glucagon secretion from pancreatic alpha-cells evoked by low glucose was also severely impaired in NCAM(-/-) islets. The diminution of insulin secretion is not attributable to defective glucose metabolism or glucose sensing (documented as glucose-induced changes in intracellular Ca(2+) and K(ATP)-channel activity). Resting K(ATP) conductance was lower in NCAM(-/-) beta-cells than wild-type cells, and this difference was abolished when F-actin was disrupted by cytochalasin D (1 muM). In wild-type beta-cells, the submembrane actin network disassembles within 10 min during glucose stimulation (30 mM), an effect not seen in NCAM(-/-) beta-cells. Cytochalasin D eliminated this difference and normalized insulin and glucagon secretion in NCAM(-/-) islets. Capacitance measurements of exocytosis indicate that replenishment of the readily releasable granule pool is suppressed in NCAM(-/-) alpha- and beta-cells. Our data suggest that remodeling of the submembrane actin network is critical to normal glucose regulation of both insulin and glucagon secretion.


Assuntos
Intolerância à Glucose/genética , Insulina/metabolismo , Ilhotas Pancreáticas/fisiologia , Moléculas de Adesão de Célula Nervosa/deficiência , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Exocitose/fisiologia , Feminino , Glucagon/metabolismo , Glucose/fisiologia , Insulina/fisiologia , Secreção de Insulina , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
12.
Pflugers Arch ; 457(6): 1343-50, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18795319

RESUMO

Exocytosis of secretory vesicles results in the release of insulin from pancreatic beta-cells, although little is known about this process in humans. We examined the exocytosis of single secretory vesicles and their associated fusion pores in human beta-cells by cell-attached capacitance and conductance measurement. Unitary capacitance steps were observed, consistent with the exocytosis of single secretory vesicles. These were often coincident with increases in patch conductance representing the presence of a stable fusion pore. In some events, the fusion pore closed, mediating kiss-and-run, which contributed 20% of the exocytotic events. The cAMP-raising agent forskolin (5 microM) doubled the relative contribution of kiss-and-run. This effect was confirmed visually in MIN6 cells expressing a fluorescent granule probe. Thus, we demonstrate the unitary capacitance steps and fusion pores during single vesicle exocytosis in human beta-cells. Furthermore, these secretory vesicles can undergo rapid recycling by kiss-and-run, and this process is up-regulated by cAMP.


Assuntos
Exocitose/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Vesículas Secretórias/metabolismo , Adulto , Animais , Colforsina/farmacologia , Capacitância Elétrica , Exocitose/efeitos dos fármacos , Humanos , Secreção de Insulina , Masculino , Pessoa de Meia-Idade
13.
Pflugers Arch ; 458(2): 389-401, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19018564

RESUMO

Quantal release of adenosine triphosphate (ATP) was monitored in rat pancreatic beta-cells expressing P2X(2) receptors. Stimulation of exocytosis evoked rapidly activating and deactivating ATP-dependent transient inward currents (TICs). The unitary charge (q) of the events recorded at 0.2 microM [Ca(2+)](i) averaged 4.3 pC. The distribution of the 3 square root q of these events could be described by a single Gaussian. The rise times averaged approximately 5 ms over a wide range of TIC amplitudes. In beta-cells preloaded with 5-hydroxytryptamine (5-HT; accumulating in insulin granules), ATP was coreleased with 5-HT during >90% of the release events. Following step elevation of [Ca(2+)](i) to approximately 5 microM by photo release of caged Ca(2+), an increase in membrane capacitance was observed after 33 ms, whereas ATP release first became detectable after 43 ms. The step increase in [Ca(2+)](i) produced an initial large TIC followed by a series of smaller events that echoed the changes in membrane capacitance (DeltaC(m)). Mathematical modeling suggests that the large initial TIC reflects the superimposition of many unitary events. Exocytosis, measured as DeltaC(m) or TICs, was complete within 2 s after elevation of [Ca(2+)](i) with no sign of endocytosis masking the capacitance increase. The relationship between total charge (Q) and DeltaC(m) was linear with a slope of approximately 1.2 pC/fF. The latter value predicts a capacitance increase of 3.6 fF for the observed mean value of q, close to that expected for exocytosis of individual insulin granules. Our results indicate that measurements of ATP release and DeltaC(m) principally (> or =85-95%) report exocytosis of insulin granules.


Assuntos
Trifosfato de Adenosina/metabolismo , Exocitose/fisiologia , Células Secretoras de Insulina/metabolismo , Animais , Capacitância Elétrica , Insulina/metabolismo , Ratos , Receptores Purinérgicos P2/fisiologia , Vesículas Secretórias/fisiologia , Serotonina/metabolismo
14.
J Clin Invest ; 119(1): 80-90, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19065048

RESUMO

Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K+ (KATP) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic beta cells. These beta-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from beta-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of KATP channels in pancreatic beta cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of KATP channels, closed KATP channels, elevated intracellular calcium levels, and stimulated insulin release in beta-V59M beta cells, indicating that events downstream of KATP channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic beta cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. beta-V59M islets also displayed a reduced percentage of beta cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of beta-V59M mice. Their cause requires further investigation.


Assuntos
Diabetes Mellitus/genética , Modelos Animais de Doenças , Células Secretoras de Insulina/metabolismo , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Subunidades Proteicas/genética , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Diabetes Mellitus/metabolismo , Feminino , Humanos , Hipoglicemiantes/farmacologia , Recém-Nascido , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Subunidades Proteicas/metabolismo , Tolbutamida/farmacologia
15.
Genes Dev ; 22(22): 3135-46, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19056893

RESUMO

Insulin secretion from pancreatic beta cells is stimulated by glucose metabolism. However, the relative importance of metabolizing glucose via mitochondrial oxidative phosphorylation versus glycolysis for insulin secretion remains unclear. von Hippel-Lindau (VHL) tumor suppressor protein, pVHL, negatively regulates hypoxia-inducible factor HIF1alpha, a transcription factor implicated in promoting a glycolytic form of metabolism. Here we report a central role for the pVHL-HIF1alpha pathway in the control of beta-cell glucose utilization, insulin secretion, and glucose homeostasis. Conditional inactivation of Vhlh in beta cells promoted a diversion of glucose away from mitochondria into lactate production, causing cells to produce high levels of glycolytically derived ATP and to secrete elevated levels of insulin at low glucose concentrations. Vhlh-deficient mice exhibited diminished glucose-stimulated changes in cytoplasmic Ca(2+) concentration, electrical activity, and insulin secretion, which culminate in impaired systemic glucose tolerance. Importantly, combined deletion of Vhlh and Hif1alpha rescued these phenotypes, implying that they are the result of HIF1alpha activation. Together, these results identify pVHL and HIF1alpha as key regulators of insulin secretion from pancreatic beta cells. They further suggest that changes in the metabolic strategy of glucose metabolism in beta cells have profound effects on whole-body glucose homeostasis.


Assuntos
Metabolismo dos Carboidratos/genética , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia , Animais , Células Cultivadas , Eletrofisiologia , Fluorometria , Teste de Tolerância a Glucose , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Immunoblotting , Imuno-Histoquímica , Secreção de Insulina , Camundongos , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Proteína Supressora de Tumor Von Hippel-Lindau/genética
16.
Philos Trans A Math Phys Eng Sci ; 366(1880): 3503-23, 2008 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-18632454

RESUMO

The perforated whole-cell configuration of the patch-clamp technique was applied to functionally identified beta-cells in intact mouse pancreatic islets to study the extent of cell coupling between adjacent beta-cells. Using a combination of current- and voltage-clamp recordings, the total gap junctional conductance between beta-cells in an islet was estimated to be 1.22 nS. The analysis of the current waveforms in a voltage-clamped cell (due to the firing of an action potential in a neighbouring cell) suggested that the gap junctional conductance between a pair of beta-cells was 0.17 nS. Subthreshold voltage-clamp depolarization (to -55 mV) gave rise to a slow capacitive current indicative of coupling between beta-cells, but not in non-beta-cells, with a time constant of 13.5 ms and a total charge movement of 0.2 pC. Our data suggest that a superficial beta-cell in an islet is in electrical contact with six to seven other beta-cells. No evidence for dye coupling was obtained when cells were dialysed with Lucifer yellow even when electrical coupling was apparent. The correction of the measured resting conductance for the contribution of the gap junctional conductance indicated that the whole-cell KATP channel conductance (GK,ATP) falls from approximately 2.5 nS in the absence of glucose to 0.1 nS at 15 mM glucose with an estimated IC50 of approximately 4mM. Theoretical considerations indicate that the coupling between beta-cells within the islet is sufficient to allow propagation of [Ca2+]i waves to spread with a speed of approximately 80 microms-1, similar to that observed experimentally in confocal [Ca2+]i imaging.


Assuntos
Junções Comunicantes , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Trifosfato de Adenosina/química , Animais , Cálcio/química , Células Cultivadas , Eletrofisiologia , Concentração Inibidora 50 , Potenciais da Membrana , Camundongos , Microscopia Confocal , Modelos Biológicos , Técnicas de Patch-Clamp , Potássio/metabolismo
17.
J Physiol ; 586(14): 3313-24, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18511483

RESUMO

Pancreatic beta-cells secrete insulin by Ca(2+)-dependent exocytosis of secretory granules. beta-cell exocytosis involves SNARE (soluble NSF-attachment protein receptor) proteins similar to those controlling neurotransmitter release and depends on the close association of L-type Ca(2+) channels and granules. In most cases, the secretory granules fuse individually but there is ultrastructural and biophysical evidence of multivesicular exocytosis. Estimates of the secretory rate in beta-cells in intact islets indicate a release rate of approximately 15 granules per beta-cell per second, 100-fold higher than that observed in biochemical assays. Single-vesicle capacitance measurements reveal that the diameter of the fusion pore connecting the granule lumen with the exterior is approximately 1.4 nm. This is considerably smaller than the size of insulin and membrane fusion is therefore not obligatorily associated with release of the cargo, a feature that may contribute to the different rates of secretion detected by the biochemical and biophysical measurements. However, small molecules like ATP and GABA, which are stored together with insulin in the granules, are small enough to be released via the narrow fusion pore, which accordingly functions as a molecular sieve. We finally consider the possibility that defective fusion pore expansion accounts for the decrease in insulin secretion observed in pathophysiological states including long-term exposure to lipids.


Assuntos
Células Secretoras de Insulina/fisiologia , Insulina/metabolismo , Animais , Cálcio/metabolismo , Exocitose/fisiologia , Secreção de Insulina , Camundongos
18.
PLoS One ; 3(5): e2182, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-18478115

RESUMO

BACKGROUND: Type 2 diabetes often displays hyperlipidemia. We examined palmitate effects on pancreatic islet function in relation to FFA receptor GPR40, NO generation, insulin release, and the PPARgamma agonistic thiazolidinedione, rosiglitazone. PRINCIPAL FINDINGS: Rosiglitazone suppressed acute palmitate-stimulated GPR40-transduced PI hydrolysis in HEK293 cells and insulin release from MIN6c cells and mouse islets. Culturing islets 24 h with palmitate at 5 mmol/l glucose induced beta-cell iNOS expression as revealed by confocal microscopy and increased the activities of ncNOS and iNOS associated with suppression of glucose-stimulated insulin response. Rosiglitazone reversed these effects. The expression of iNOS after high-glucose culturing was unaffected by rosiglitazone. Downregulation of GPR40 by antisense treatment abrogated GPR40 expression and suppressed palmitate-induced iNOS activity and insulin release. CONCLUSION: We conclude that, in addition to mediating acute FFA-stimulated insulin release, GPR40 is an important regulator of iNOS expression and dysfunctional insulin release during long-term exposure to FFA. The adverse effects of palmitate were counteracted by rosiglitazone at GPR40, suggesting that thiazolidinediones are beneficial for beta-cell function in hyperlipidemic type 2 diabetes.


Assuntos
Ilhotas Pancreáticas/efeitos dos fármacos , Óxido Nítrico/biossíntese , Ácido Palmítico/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Animais , Linhagem Celular , Diazóxido/farmacologia , Feminino , Humanos , Hidrólise , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/fisiopatologia , Óxido Nítrico Sintase/metabolismo , Fosfatidilinositóis/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Rosiglitazona
19.
Science ; 318(5855): 1469-72, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17991826

RESUMO

Variants in the FTO (fat mass and obesity associated) gene are associated with increased body mass index in humans. Here, we show by bioinformatics analysis that FTO shares sequence motifs with Fe(II)- and 2-oxoglutarate-dependent oxygenases. We find that recombinant murine Fto catalyzes the Fe(II)- and 2OG-dependent demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, formaldehyde, and carbon dioxide. Consistent with a potential role in nucleic acid demethylation, Fto localizes to the nucleus in transfected cells. Studies of wild-type mice indicate that Fto messenger RNA (mRNA) is most abundant in the brain, particularly in hypothalamic nuclei governing energy balance, and that Fto mRNA levels in the arcuate nucleus are regulated by feeding and fasting. Studies can now be directed toward determining the physiologically relevant FTO substrate and how nucleic acid methylation status is linked to increased fat mass.


Assuntos
DNA/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Sequência de Aminoácidos , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Núcleo Celular/enzimologia , Biologia Computacional , Metilação de DNA , DNA de Cadeia Simples/metabolismo , Ingestão de Alimentos , Metabolismo Energético , Jejum , Compostos Ferrosos/metabolismo , Hipotálamo/enzimologia , Hipotálamo/metabolismo , Masculino , Camundongos , Oxigenases de Função Mista , Dados de Sequência Molecular , Oxo-Ácido-Liases/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Ácido Succínico/metabolismo , Timina/análogos & derivados , Timina/metabolismo
20.
J Gen Physiol ; 129(3): 221-31, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17296927

RESUMO

The release of gamma-aminobutyric acid (GABA) and ATP from rat beta cells was monitored using an electrophysiological assay based on overexpression GABA(A) or P2X2 receptor ion channels. Exocytosis of LDCVs, detected by carbon fiber amperometry of serotonin, correlated strongly (approximately 80%) with ATP release. The increase in membrane capacitance per ATP release event was 3.4 fF, close to the expected capacitance of an individual LDCV with a diameter of 0.3 microm. ATP and GABA were coreleased with serotonin with the same probability. Immunogold electron microscopy revealed that approximately 15% of the LDCVs contain GABA. Prespike "pedestals," reflecting exit of granule constituents via the fusion pore, were less frequently observed for ATP than for serotonin or GABA and the relative amplitude (amplitude of foot compared to spike) was smaller: in some cases the ATP-dependent pedestal was missing entirely. An inward tonic current, not dependent on glucose and inhibited by the GABA(A) receptor antagonist SR95531, was observed in beta cells in clusters of islet cells. Noise analysis indicated that it was due to the activity of individual channels with a conductance of 30 pS, the same as expected for individual GABA(A) Cl- channels with the ionic gradients used. We conclude that (a) LDCVs accumulate ATP and serotonin; (b) regulated release of GABA can be accounted for by exocytosis of a subset of insulin-containing LDCVs; (c) the fusion pore of LDCVs exhibits selectivity and compounds are differentially released depending on their chemical properties (including size); and (d) a glucose-independent nonvesicular form of GABA release exists in beta cells.


Assuntos
Trifosfato de Adenosina/metabolismo , Exocitose/fisiologia , Células Secretoras de Insulina/metabolismo , Vesículas Secretórias/metabolismo , Serotonina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Trifosfato de Adenosina/isolamento & purificação , Animais , Antagonistas de Receptores de GABA-A , Cinética , Fusão de Membrana , Microscopia Imunoeletrônica , Modelos Biológicos , Peso Molecular , Antagonistas do Receptor Purinérgico P2 , Piridazinas/farmacologia , Ratos , Receptores Purinérgicos P2X2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...